‘Psychology Sorted’ Book 1 second edition (including all the new additions) out now on Amazon!

Laura and I have been working hard to get the second edition of ‘Psychology Sorted’ Book 1, Core Approaches out – and here it is! This second edition includes key study summaries for all of the new additions to the Core Approaches – yes, those pesky topics that could come up on Paper 1, Section A. So, if you have been wondering about which study to use for agonists, antagonists, excitatory/inhibitory synapses, neural pruning etc. (I mention the Biological topics as these are the ones that seem to have caused us all so much grief!) then do not fear, we have them here!

You can order the book here

And if you love it please leave a review to say that you do!

Planning your course effectively – more overlaps

Cog blue corrected

Similarly to the biological approach, there are many overlaps between the cognitive approach and the options of abnormal psychology, development, health and human relationships.  For example, the psychology of cognitive processes and their reliability can explain clinical biases in diagnosis of disorders, debates regarding the etiology of  disorders and also inform their treatment.

Watch out for more of these!

Can we learn to love anything or anyone if we just hang around them long enough?

One of the Cognitive Approach studies that we cover in our fabulous book, ‘Psychology Sorted, Book 1’ is by Slovic et al. (2017) and which concerns the Affect Heuristic. The Affect Heuristic is a cognitive bias composed of several dimensions, one of which is:

  • The ‘mere exposure effect’: this may be a factor in the affect heuristic. It involves a favourable (‘good’) judgement being made of stimuli by participants who had been presented with that stimuli several times over compared to less familiar material. In other words, the participants in the study preferred the stimuli they had simply seen/been exposed to more times than the other stimuli.

So, this finding shows we human beings to be fairly simple creatures: we like something on the grounds that it is more familiar than the alternative choice. This obviously saves us a lot of time and effort in trying to compare the relative merits and demerits of two possibly similar items or people. For example, I am interviewing two candidates for a job. One of the candidates already works at my company and I have known her for two years now. She’s a good enough worker, doesn’t cause any trouble and well, let’s face it, she’s a known quantity.

The other candidate is someone that I don’t know. On paper they seem far more interesting than the candidate I already know: they have some good ideas for the role and they may bring a breath of fresh air to the company. But…..what if they aren’t as good as they seem? What if they don’t get on with the team? What if their ideas never actually see the light of day? Can I be bothered training up someone new? Maybe the candidate I already know is actually the best person for the job. Hmm, yes, maybe the familiar person is best – I’m used to their face, they fit in etc, etc.

This choice may, in fact, turn out to be the best choice but it is still an example of the mere exposure effect guiding someone’s behaviour rather than a fair and unbiased assessment of the evidence. Could the mere exposure effect explain seemingly baffling phenomena such as particular politicians becoming less reviled and more accepted the longer they are in office? Could it explain you humming along to a song you detest simply because it is constantly being played on the radio? Be aware of this in your own life – we all do it and it’s not necessarily the best way to make decisions as to what is good and valuable in our lives.

signs-1172209_1920

Cognitive biases – don’t let them confuse you.

Studying the reliability of thinking and decision-making leads us into the slightly

chimpanzee-978809_640
System 2 thinking

complex world of System 1 (fast) and System 2 (slow) thinking and heuristics.  Teaching cognitive biases is straightforward, and less is more.  The key point is that we are inclined to base our current thinking and decision-making on past experiences and present perceptions.  Our memories distort the past, and the media and our selective attention distort our present, especially if we are being pushed into a fast decision.

Tversky & Kahneman (1974) review a range of research in which they themselves have tested different heuristics, looking for evidence of ways in which System 1 thinking (effortless, fast, a short-cut to the answer) may operate when tested under specific conditions.  They describe three different heuristics, leading to cognitive bias.

The representative heuristic is based on the idea that one event is representative of other events very similar to it, using the idea of how probable something is according to the individual’s prior knowledge of it. Even though participants knew that 70% of the descriptions of people that they had been given had referred to engineers, while 30% had referred to lawyers, when faced with a description of a man who could have been either, they judged that there was an equal chance of John being either an engineer or a lawyer.  Similarly, when given a description of a shy quiet person, they were immediately judged to be most likely to be a librarian, even though the list of possible occupations included those that were much more statistically probable.  This can be seen as the basis for stereotypes – taking a shortcut based on prior knowledge and assumptions.

The availability heuristic works by people tending to judge an event using the probability of its occurring, according to their prior knowledge: e.g. a middle-aged man with chest pains might be assumed to be having a heart attack but a four-year-old child with similar pains would not elicit the same response as four-year-old children do not tend to have heart attacks.  This can lead to bias in diagnosis, as clinicians base their diagnoses on previous examples that come readily to mind; they are cognitively available.

The anchoring bias involves an initial value or starting-point in an information processing task determining how the final value is arrived at. The researchers tested high school students asking them to estimate one of the following: 8x7x6x5x4x3x2x1 or 1x2x3x4x5x6x7x8. Of course, each answer is the same as the numbers are identical per list. What Tversky and Kahneman found was that the descending list (8x7x6 etc.) produced a much higher estimate than the ascending scale (1x2x3 etc.) with the researchers concluding that the first value anchored the value as either high or low and that this is what caused the adjustment to the estimations.  This is related to our first judgements about people: if we judge them in a positive light because of their friendly behaviour, this can ‘anchor’ our appraisal of their subsequent behaviour.

Use these examples as the basis for discussing how stereotypes are developed, or how diagnoses can lack validity, and they are also useful for discussing the lab experiment method.  I am sure students can think of many more examples of how these heuristics can occasionally (not always) work to distort our thinking and decision-making in real life. But that might take some time and some logical, patient reasoning using System 2 thinking!

Psychology Sorted cognitive research: The effect of digital technology on memory and learning

There has been a lot in the news recently about the effect of social media on mental health, but less about the effect on school and university students of reading or responding to texts during lectures.  As students expect to be ‘connected’ throughout the day, gradually mobile phones have been finding their way into classrooms and lecture halls. Students often argue this makes no difference to their learning, as they can disregard texts and interruptions.  But is this true? Another study from Psychology Sorted  is explored today, with examples of how it may be used.

iphone-1032781_640

Rosen et al (2011) conducted a field experiment to examine the direct impact of text message interruptions on memory in a classroom environment and found the effects to be a slight, but significant, reduction in memory.  This is an example of a study that can be used to illustrate research into the influence of technology and also to explore a common method used to research the influence of technology – the field experiment.

The researchers conducted their experiment in a classroom during a lecture.  The independent variable was the  number of texts received and sent (3 groups, no/low, medium and high), and the dependent variable was the score on a test based on the lesson content. 185 college students (148 female and 37 male) were told that they were going to view a 30-minute videotaped lecture relevant to their course and that during the session some of them would receive texts from the researchers to which they should respond as promptly as possible. They were informed that they would be tested on the material after the lecture.

The results were that the no/low texting group performed 10.6% better than the high texting group in their tests. The test score was significantly negatively correlated with the total number of words sent and received. Those participants who chose to wait more than 4-5 minutes to respond to a text message did better than those who responded immediately.  But in all cases the difference was only just significant. This led the researchers to suggest that metacognitive skills (including learning to wait before responding to disturbances that make us lose focus) should be explicitly taught and that it might be wise for teachers and lecturers to use strategies that focus on when it is appropriate to take a break and when it is important to focus without distractions.

Some schools have opted to require all mobile phones to be turned off or left in lockers, but the problem is that just because the student’s technology is ‘out of sight’ it is not ‘out of mind.’ Maybe teachers should share the results of this study with their students?